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Although within their own disciplines, the statistical, social science, medical, and terrestrial ecology literatures are
replete with accounts of the widespread misapplication and misuse of statistical testing and interpretation, aware-
ness of these issues is weak among marine scientists who are not statisticians, but whose work is nonetheless situ-
ated within the expanse of marine ecology. Moreover, the major recent developments in statistical approaches in
these fields are, as yet, poorly-represented in the marine ecological literature. We present a non-technical review
of (1) the most fundamental, yet pervasive, problems concerning classical statistics, with suggestions for improved
practice, (2) alternate, oftenmore appropriate and intuitive, approaches to statistical design and interpretation, and
(3) the crucial roles of reviewers, and especially of editors and editorial boards. It is hoped that increasing the aware-
ness of these issues will strengthen statistical usage in marine ecology.
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1. Introduction

The capacity of the human brain being what it is, no researcher
can fully master all areas of science touching upon marine ecology.
Hence, scientists who use statistics in their research relating more
or less directly to marine ecology may be divided into three broad
categories: (1) quantitative marine ecology specialists, i.e. those
whose main level of expertise is in sampling and experimental design,
data treatment and interpretation; these workers tend to focus upon
the upper levels of ecological organization, e.g. populations and
communities; (2) those working on biological questions related to
marine ecology and who have upper-level familiarity with statisti-
cal procedures; they mainly focus upon the interaction of individual
organisms with the environment, and are often unaware, or only
vaguely so, of the numerous and lively debates on statistical
methods in the statistical literature; (3) those whose main area of
expertise is outside of statistics and who consider it as a kind of rec-
ipe book to be followed in order to be taken seriously by journal re-
viewers; they often work at the sub-individual level, e.g. in
physiology, chemical ecology or cellular ultrastructure. The first cat-
egory of scientists includes several notable ‘giants’ in the field of
quantitative marine ecology, who have stressed the importance of
constructing studies with the paramount objective of statistical ro-
bustness (e.g. Green, 1979,1989; Hurlbert, 1984; Peterson et al.,
2001; Stewart-Oaten, 1995; Underwood, 1997; Underwood and
Chapman, 2003). The present review is addressed primarily to the
latter two categories of researchers, whomwe here refer to as ‘func-
tional’ ecologists (for lack of a better term), and who contribute the
majority of papers touching upon ecology in marine science
journals.

Assuming an adequate methodology, study results may be com-
promised at two critical, and interdependent, stages: planning the
study, and analyzing/interpreting the subsequent data. While both
of these areas have been abundantly discussed in the biological lit-
erature, statistical usage is subject to recurring problems of misuse
and misinterpretation. Apart from run-of-the-mill quibbling over
whether this or that test is most appropriate for this or that ex-
perimental design, there are much more fundamental problems
which arise repeatedly, whether we are aware of them or not, in
the use of statistics. Indeed, entire volumes and hundreds of im-
portant papers have been written concerning the past and present
misconception, misuse, and misinterpretation of statistics in virtu-
ally all fields of research (e.g. Anderson et al., 2001; Cohen, 1994;
Cumming and Finch, 2005; Hubbard and Bayarri, 2003; Huck,
2011; Morrison and Henkel, 1970; Sellke et al., 2001; Ziliak and
McCloskey, 2008a), lending credence to Mark Twain's (1907) sum-
mary verdict that ‘there are three kinds of lies: lies, damned lies,
and statistics’. This may come as a surprise to some readers, who
are accustomed to thinking of statistics as a tool to settle ques-
tions, not to raise them.

It may also come as a surprise to many marine ecologists that the
social sciences (especially psychology) and medical sciences adopted
statistical data analysis well before the field of ecology (mid 1950s vs
mid‐1960s), and that these fields have been on the forefront of new
developments in statistical practice over the past two decades (a sim-
ilar comment was made by Germano, 1999). Influenced by these de-
velopments, terrestrial ecologists have made appreciable inroads
toward improved statistical procedures in recent years (Anderson et
al., 2001; Fidler et al., 2006; Stephens et al., 2005; Yoccoz, 1991),
but these considerations appear to be poorly‐represented in the
work of all but the most confirmed quantitative ecologists. Although
specific suggestions are scattered throughout the marine ecological
literature, we are aware of only two primarily‐marine papers which
have delved into major areas of the problem in the past 13 years,
and only one of them was in a marine journal (Germano, 1999;
Gerrodette, 2011).
The basic problem for biologists is the desire to establish incontro-
vertible ‘facts’ from numerical data gathered in the study of living or-
ganisms. Contrary to what most of us believe (and have usually been
taught), the situations in which this may actually be done are very
rare, and most ecological studies are far too complex in scope to per-
mit such a thing, within the bounds of the statistical methodology
employed. Furthermore, we would like to accomplish these objec-
tives with absolutely no subjective input, ostensibly to show that our
data interpretation is completely objective (Berger and Berry, 1988).
There are several reasons why neither of these desires are realistic,
as will be outlined below.

Here we present a brief, non-technical overview of the problems
and perspectives regarding the foundations and interpretation of
statistical analyses in marine ecology. To enhance focus, we will ex-
clude spatial statistics, and concentrate on statistics of experimental
or observational data and their component descriptors. We first re-
view the common fundamental problems encountered with ‘classi-
cal’ statistical usage in marine biology/ecology, with suggestions
for remediation, and then outline alternate approaches which allow
us to more adequately design studies and analyze some types of eco-
logical data. The pervasiveness of the problems encountered with
statistical usage in marine biology/ecology are such that there is no
justification for casting the first stone — and for this reason, we
choose not to single out particular studies as examples not to be
followed.

2. Epistemological fundamentals

2.1. Reasoned judgment vs blinkered mechanics

A mechanistic approach to data treatment has often replaced in-
telligent data interpretation, and this has been lamented by many
statisticians in many fields. Scientists often feel that they must treat
data in a certain stereotypical fashion in order to be taken seriously
by their peers (Stewart-Oaten, 1995). There are two very important
points to make on this subject: (1) all statistical treatments rely on rea-
soned judgment, whether the scientist uses it or not, so it is impossible to
think of statistics as a simple, blind, ‘scale of justice’; (2) a failure to use
reasoned judgment in statistical treatment of data is a fundamental ab-
dication of responsibility which calls into question any subsequent con-
clusions. Consider the following example: we wish to discover
where the administration building is situated on a sloping university
campus. Two methods are proposed: (1) draw random transects
through the campus and fix sampling points on each transect; at each
sampling point, ask if this is the administration building. (2) Our prior
experience having shown that administration buildings are usually
located at the dominant topographical feature, we decide to proceed
to the building at the top of the hill and ask if it is the administration
building. Both approaches will give us the correct answer, but the first
approach is likely to require somuch effort and cost that wemay decide
not to pursue the question at all.

2.2. Observational vs experimental studies

Although most statistics texts underscore the importance of ran-
domization to the underpinnings of experimental study, this cum-
bersome requirement is often not satisfied in many such studies,
and even less so in observational studies (e.g. seasonal variations in re-
productive activity, biochemical composition, comparisons between
different geographical locations, etc.). However, itmust be remembered
that randomization at the planning stage is a fundamental requirement
for classical statistics, both parametric and non-parametric. Many ob-
servational studies apply classical hypothesis-testing statistics in their
data treatment, and this generates seemingly meaningful numbers,
but in reality such studies should rely muchmore on descriptive statis-
tics and comparisons of effect sizes (Greenland, 1990; Rothman,
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1990b), regardless of peer and reviewer pressure to the contrary. A sec-
ond basic reason for eschewing classical statistics in observational stud-
ies is the requirement for hypothesis formulation based on a plausible
theoretical framework, without which it is impossible to engage in pre-
cise interpretations of P‐values or confidence intervals (Poole, 2001).
Observational studies precede the first experimental studies, since it is
impossible to formulate hypotheses when we know nothing at all
about the systems studied.
2.3. Hypothesis testing vs significance testing

The majority of classical analyses are based upon a mixture of hy-
pothesis testing and significance testing. Although these are today
widely believed to be integral parts of a common approach, and pres-
ented this way in many statistics textbooks, Fisherian significance
testing and Neyman–Pearson Type 1 error probability testing are de-
rived from different foundations and intended for different objectives
(Hubbard and Bayarri, 2003; Stefano et al., 2005). Indeed, the primi-
tive genesis of the ensuing decades of confusion was Fisher's own
misunderstanding of Gosset (=Student)'s precise meaning of ‘statis-
tical significance’ (see Ziliak, 2011).

One of the basic, and far-reaching consequences of this, is the
incongruity of associating Fisher's evidential P‐value with
Neyman–Pearson's Type 1 error rate (α); yet this is done routinely
in many disciplines, including marine ecology, under the name of
‘Null Hypothesis Significance Testing’ (NHST), or simply ‘Signifi-
cance testing’ (Fig. 1), and it has been said to render meaningless
the extraordinarily numerous studies in which it has been per-
formed (Hubbard and Bayarri, 2003). The situation is not helped
by the ubiquitous, user-friendly statistical software which stan-
dardizes this approach, nor by recent papers which involuntarily
muddy the waters by assigning a totally different meaning to α
(see Christensen, 2005; Hubbard and Bayarri, 2005). A solution
to this staggering problem has been proposed, by reporting ob-
served P‐values as lower bounds for Type 1 error probabilities
(Sellke et al., 2001), but its complexity overshadows the actual
tests originally performed. In the current state of affairs, we there-
fore present below the minimum precautions and guidelines for
improved use of the Fisherian–Pearson NHST amalgam so preva-
lent today.
Fisher NHST

- Specification and testing
a null hypothesis (H0)

- Only Type I errors
considered (α)

- A priori fixing critical P-
levels for α

- Concluding that there is
an acceptably high
probability of H0 being
true if the calculated P-
value ≥ critical P-level for
α

- Application of the results
of a significance test only
to a particular experiment

- Specification and te
hypothesis (H0);
hypothesis formulate

- Only Type 1 errors
usually considered

- A priori power calcu
(usually not done, bu
recommended)

- Concluding that the
acceptably high prob
being true if the calcu
value ≥ critical P-leve

- Concluding that the
acceptably high prob
H1 is true if the calcu
value < the critical P-

- Application of the re
significance test to a
population and to an
number of trials (freq

Fig. 1. Characteristics of Fisherian, Neyman–Pearson,
3. Problems encountered with null hypothesis significance
testing (NHST)

3.1. Criticism of NHST

NHST has become a staple of ecological research since the 1960s,
often in the form of Student t-tests or ANOVAs. Curiously, it has
been severely criticized in hundreds of statistical papers throughout
its rise to prominence (http://warnercnr.colostate.edu/~anderson/
thompson1.html compiles 402 such papers up to 2001, and http://
swfsc.noaa.gov/SignificanceTestRefs compiles 127 additional such pa-
pers up to 2010; of the recent papers, the following are particularly
notable: Carver, 1978; Cohen, 1994; Fidler et al., 2006; Gelman and
Stern, 2006; Germano, 1999; Gerrodette, 2011; Gigerenzer, 2004;
Gigerenzer et al., 2004; Hubbard and Bayarri, 2003; Johnson, 1999;
Martίnez-Abraίn, 2007; Sellke et al., 2001; Silva-Ayçaguer et al.,
2010; Stang et al., 2010; Yoccoz, 1991). Following the lead of medical,
economic, and social science journals, such papers have appeared in
theoretical and terrestrial ecology journals, along with illustrative
biometric studies (e.g. Fidler et al., 2006; Johnson, 1999; Stephens
et al., 2007; Yoccoz, 1991). The comment that NHST is the ‘most com-
mon and flagrant misuse of statistics’ is one of the milder conclusions
many statisticians have drawn (Johnson, 1999). Indeed, it has even
been said, in many ways, that if NHST has had such a long and prolific
history of misuse and misinterpretation, this may be more due to its
contorted (or at least counter-intuitive) logic than to widespread
deficiencies among its users (e.g. Beyth-Marom et al., 2008;
Goodman, 1999; Sterne and Smith, 2001). The logic has been summa-
rized as ‘If A is true, B will happen sometimes; therefore if B has been
found to happen, A can be considered disproved’' (Berkson, 2003),
which indeed seems contradictory and counter-intuitive! To para-
phrase Berkson (2003), when confronted with a corpse, we do not
say ‘this is evidence against the hypothesis that no one is dead’!
Rather, we say ‘this person is dead’, which is much more in line
with our natural pattern of cognition. Yet for all its convoluted rea-
soning, NHST is the paradigm most researchers in marine ecology
use today, and the plethora of problems it engenders, and recommen-
dations for improved usage, must be highlighted as long as it remains
current.

Much of the criticism of NHST has centered upon P‐values and
their interpretation (Fisherian component), and the inadequacy of
Neyman-Pearson

sting a null
alternative

d a priori

lations
t strongly

re is an
ability of H0

lated P-
l for α

re is an
ability that
lated P-
level for α

sults of a

unlimited
uentist)

- Specification of null (H0) and
alternative hypotheses (H1)

- Consideration of both
Type I (α) and Type II
(β) errors

- Accepting H0 if P-value
is high (subjective
judgment), accepting H1

otherwise

- Application of the results of a
significance test to a population
and to an unlimited number of
trials (frequentist)

and NHST approaches to evaluating differences.

http://warnercnr.colostate.edu/~anderson/thompson1.html
http://warnercnr.colostate.edu/~anderson/thompson1.html
http://swfsc.noaa.gov/SignificanceTestRefs
http://swfsc.noaa.gov/SignificanceTestRefs


100 P.G. Beninger et al. / Journal of Experimental Marine Biology and Ecology 426–427 (2012) 97–108
mechanical cut-off levels for α (Neyman–Pearson component). These
being the most frequent problems encountered in marine ecology pa-
pers, we will outline them briefly.

3.2. α levels and P‐values

In the Fisherian–Pearson amalgam, P is the probability that a given
effect could arise if the null hypothesis, or any hypothesis not envis-
aged in the alternative hypothesis, were true (Type I error), whereas
α is the probability value above which we reject our alternative hy-
pothesis, also called the significance level. Although most statistics
textbooks do vaguely mention that the significance levels of 0.05,
0.01 etc. are subjective, workers in marine ecology often recognize
the 0.05 level as a sort of mechanical Occam's razor: b0.05, reject
null hypothesis, ≥0.05, accept null hypothesis. Statisticians have
decried this reasoning for decades (Cohen, 1994; Fisher, 1959;
Gelman and Stern, 2006; Gigerenzer, 2004; Gigerenzer et al., 2004;
Hubbard and Bayarri, 2003; Stephens et al., 2005; and the numerous
references cited in these works). Quite apart from the fact that we
cannot accept a null hypothesis (this is tantamount to ‘proving’ a
null hypothesis, which is simply not possible), it is argued that the
onus is on the researcher to establish an α in line with his/her ‘evi-
dence and ideas’ (Fisher, 1959), or at least in line with the ‘risk
posed to science or society of false positive or false negative results’
(Mapstone, 1995; Stephens et al., 2005). While this may be possible
in some research fields (especially medicine), it either does not
make much sense, or is impossible to accomplish, in most marine
ecological studies. We must therefore be open to the possibility of
significance levels different from 0.05, and to the justification for
such levels, especially with respect to the minimization of Type 2
errors (i.e., the probability of accepting H0 when it is in fact false;
see below). An α=0.1 might be a sufficient Type 1 error level for
concluding a difference in coloration of reef fish, for example,
while 0.05 may be required to conclude that there is a difference
in heavy metal concentration in species of fish consumed by
humans.

To have any meaning, significance levels must be decided upon prior
to testing, even in the case of post-hoc significance testing.

3.3. Misinterpretation of P-values

A conventional expression in the medical statistical world is
that misinterpretation of P-values (for α, obviously) has killed
more people than any other type of scientific misconduct. In ma-
rine ecology, it has doubtless been responsible for many errors
in ecological interpretation, which have certainly unduly
influenced environmental policy, and brought about negative
economic consequences. In fact, there is only one thing we may
conclude from a P-value: the probability of obtaining the result
(or test statistic generically termed Evidence, E) if H0 were, in
fact, true: P (E|H0).

In other words, P‐values merely specify whether or not an effect is
likely to exist (Stefano et al., 2005); they give no information at all on
the magnitude of the effect (effect size), and are usually much less in-
formative than graphic presentations of statistical descriptors and their
confidence intervals (Lang et al., 1998). Unfortunately, in many ecolog-
ical studies, a variety of unjustified conclusions are drawn from P-
values. Twelve such fallacies have been tabulated by Goodman
(2008); the following is a list of the most egregious misinterpreta-
tions, and their mis-applications in marine ecological studies, com-
piled over years of reviewing:

A. Statistical significance.
Assuming an α=0.05, P≤0.05, there is a 5% or less probability
that we would obtain the stated result (i.e. Evidence) if H0

were true. The most widespread of the misunderstandings about
P‐values is that most workers interpret them as P(H0|E), or the
probability that the null hypothesis is true, given the test statistic
or Evidence (the Odds-Against-Chance Fantasy — Carver, 1978).
The difference between these two interpretations is not semantic,
it is hugely important. An example of this type of error in reason-
ing would be: (1) Most people who face a firing squad die from
bullet wounds, and (2) Most people who die from bullet wounds
have received them from a firing squad!
Assuming that we correctly interpret the P‐value≤0.05 as P (E|H0),
we may thus conclude that H0 is probably not true. Note that this is
not the same as saying that the alternative hypothesis is true; in-
deed, many workers assume that if P≤0.05, then the complement,
0.95, must mean there is a 95% probability that the alternative hy-
pothesis is true (the Valid Research Hypothesis Fantasy— Carver,
1978). Once again, this is not a correct conclusion: there may be
other, more compelling hypotheses to explain the observed
data, but we have either not controlled for them, or thought of
them, or we are epistemologically unable to imagine them! At
best, then, a significant P‐value can only tell us that there is a weak
probability that the null hypothesis is true. We may suggest one or
several alternate hypotheses, but in no way are any of them ‘proven’
by our significance test.

Two additional types of erroneous conclusions are often drawn
from statistical significance and associated P-values:

I. The observed difference is biologically significant. A statistically
significant difference may be obtained from data entirely bereft
of biological significance. It is absolutely fundamental that we dis-
tinguish between statistical significance and biological significance
(Johnson, 1999; Mapstone, 1995; Stefano et al., 2005; Yoccoz,
1991). This is one of the most important, and most-neglected, con-
cepts in marine biology/ecology.
– Example 1: A comparison of gastropod sizes at two sites in the

same bay. Since the probability of attaining the pre-
determined α level increases with sample size, even the most
minimal, biologically insignificant differences may register as
statistically‐significant differences. Conceivably, a mean size dif-
ference of less than 1 mm for animals measuring approx.
60 mm could thus register as a statistically significant differ-
ence, but it probably has no biological significance.

– Example 2: A statistically-significant difference in the distribu-
tion of a non-biologically significant character. In Beninger et al.
(1995a), the particular shape of marine bivalve cilia previously
considered to be sensory was shown to be artefactual; however,
ANOVAs and Tukey tests on the distribution of these cilia re-
vealed numerous, and inconsistent, significant differences
(unpublished because meaningless). Similarly, statistically signif-
icant differences in the densities of certain marine bivalve
mucocyte types were obtained for an anatomical structure in
which the mucocytes were vestigial (Beninger et al., 1995b).

II. The smaller the P-value, the greater the effect (the Significance Fal-
lacy). This misconception is perhaps somewhat less widespread
than the previous one, but nonetheless quite common. The fact
that the probability of Type 1 error is very small does not mean
that themagnitude of the effect (macrophyte growth, photosynthetic
response, etc.) is large. The magnitude of the observed difference
(effect size) is neither greater nor lesser simply because the P value
is lower or higher than the α level set at the design stage of the
study. A P‐value does not give any information at all on how strong
or reliable a result may be, merely the probability that such a result
could have arisen, had the null hypothesis been true.

B. Statistical non-significance
When a calculated P-value exceeds that of the pre-determined α
(taking α=0.05 for the sake of an example), it means that there
is >5% probability that the observed result could be due to
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something other than the effect we have tested. There are several
common, erroneous interpretations of what this really means:

I. The null hypothesis is true. As stated previously, it is impossi-
ble to prove a null hypothesis. The lack of statistical signifi-
cance could be due to the null hypothesis being true, but it
could also be due to a myriad of other causes which we have
not identified. So even a very general null hypothesis such as
‘there is no effect’ may not be meaningful — there may not
have been an effect because of an interfering variable for
which we have not controlled because we could not imagine
its existence, and without which the effect would be manifest
at the pre-determined α level. There is no reason to suppose
that there is NO effect when P exceeds the chosen significance
level, particularly when the data do point in the direction of
the effect. The automatic acceptance of the null hypothesis
when P exceeds the significance level is a widespread form of
‘corrupt science’ in marine ecology, which, paradoxically, its
practitioners often consider one of the highest and most rigorous
forms of science (Carver, 1978).

II. There is no statistically‐significant difference between groups,
so it is possible to combine the groups. This is one of the most
common errors of interpretation. It is often encountered at
the review stage by referees, and unfortunately it gets past
this stage and into print all too often. We have all read the ex-
pression “As there was no significant difference between the
two (or more!) groups, we therefore combined (pooled) the
data …”. It should be obvious from the foregoing that lack of
a statistically-significant difference does not allow groups to
be treated as though they were the same with respect to the ef-
fect measured. They should be treated as separate groups, re-
gardless of statistical insignificance at the chosen α level. For
example, at α>0.05, P‐value 0.06, there is only a 6% probabil-
ity that this evidence would arise if the null hypothesis were
true, so it is very likely that the difference between the groups
is due to something other than the null hypothesis. If the ex-
periment is carefully controlled, this is still, in fact, evidence
in favor of the effect we measure (see above), so there is no
reason to treat the groups as though they were the same! It
has been suggested that a useful guidepost for combining
groups would be a very high P-value of ≥0.25 (Underwood,
1997), but one must keep in mind that this does not mean
that the groups are equivalent with respect to the effect
tested, only that there is an acceptably large probability that
any difference is due to factors other than the alternate
hypothesis.

III. In the absence of a statistically-significant difference for a
given effect between groups, we may conclude that the groups
are equal with respect to this effect. This is perhaps the most
egregious misinterpretation of statistical non-significance. Ef-
fect equality may only be statistically ascertained, within spec-
ified limits of probability, using tests of equivalence and
noninferiority. These may be relatively straightforward, such
as confidence interval construction (Garrett, 1997; http://
www.graphpad.com), or very sophisticated (Wellek, 2010).
Moreover, such tests rely on reasoned judgment (e.g. in decid-
ing what a significant effect size is), so they are not the objec-
tive statistical razors which many biologists so earnestly— and
naïvely — seek.

Given the long history of misinterpretation and misuse of P-values
in the biomedical fields (as in all others), many journals have placed
severe constraints on their use. For example, the instructions to
authors in the journal Epidemiology include the following: ‘We
strongly discourage the use of P-values…’ (http://edmgr.ovid.com/
epid/accounts/ifauth.htm).
C. Multiple comparisons
Most of us have dutifully followed what we were taught in our statis-
tics classes, that is,multiple comparisons (e.g. t-tests) increase the risk
of a Type 1 error with each comparison — so we incorporate a com-
pensation for this (i.e. progressive decrease of α levels). In reality, ‘to
correct or not to correct’ is a subject of debate within the statistical
community, with the extreme views being blinkered correction at all
times (current standard practice), or never correction (Cohen, 1994;
Pernerger, 1998; Rothman, 1990a). Correction only under certain cir-
cumstances (which are rather rare inmarine biology/ecology)has also
been advocated (Cook and Farewell, 1996), as has been downplaying
the importance of correction, in favor of effect size, study design, and
prior judgment-determined outcome measures (Feise, 2002).

The arguments against correction run as follows: In marine biology/
ecology the null hypothesis is usually really a ‘nil’ hypothesis, and there-
fore often patently false, so that the real Type 1 error rate is 0%, and only
Type 2 errors can be made (see below). Decreasing theα levels is there-
fore self-defeating, because it reinforces the safeguards against a nonex-
istent error, while at the same time automatically increasing the
probability of a Type 2 error (Cohen, 1994; Feise, 2002). As will be seen
below, Type 2 errorsmay be evenmore serious than Type 1 errors inma-
rine ecology, so increasing their probability is not a desirable outcome.

Additional cogent arguments have been made against adjusting
for Type 1 errors when making multiple comparisons, based on the
relative risks of not doing so, assuming real null hypotheses are for-
mulated, and the risk of loss of true information by doing so (the
‘penalty for peeking’). Even assuming real null hypotheses are formu-
lated, the argument in favor of adjusting for Type 1 errors only applies
to random distributions, which is seldom the case when studying liv-
ing systems (Rothman, 1990a). Applying such adjustments to living
systems makes it more difficult to perceive patterns which exist at
the heart of data clouded by individual, experimental, or observation-
al variability. The basic debate here is, as often, reasoned judgment vs.
the mechanical application of classical procedure based on normal
distributions; many non-biologically-trained statisticians are likely
to prefer the latter approach, while biologists should prefer the for-
mer! Proceeding with multiple comparisons, and even adjusting our
hypotheses mid-way, is really proceeding as in the alternate, non-
classical approaches (Greenland and Robins, 1991; Gelman, 2009 and
see below), which appears to be much closer to how the human
mind naturally goes about investigating the world (Dienes, 2011).

Beyond the problems associated withmisunderstanding, misinter-
pretation, andmisuse ofα and P-values, the problemswith NHST have
been most succinctly and elegantly portrayed (within a literature sin-
gularly graced with eloquence), by Stephens et al. (2007). To sum up,
NHST is, in most cases, a very inappropriate tool used in very inappro-
priate ways, to achieve a misinterpreted result. The driving force be-
hind its use is the belief that it is a totally objective, mechanical
procedure which will reveal objective truth precisely because we use
it in this fashion. Not only is this obviously not the case, but there is
no alternative, totally objective, mechanical procedure which will re-
veal objective truth in any classical approach, as has been eloquently
underscored by several statistical luminaries, notably Jacob Cohen
(1994). As a consequence, some biomedical journals have not only
proscribed the use of P-values, but also any reference to statistical sig-
nificance. The complete sentence extracted from the instructions to
authors in the journal Epidemiology (see above) reads ‘We strongly
discourage the use of P-values and language referring to statistical sig-
nificance’ (http://edmgr.ovid.com/epid/accounts/ifauth.htm)!

The debate about NHST has recently received a great deal of
attention with the publication of Ziliak and McCloskey's (2008a)
The cult of statistical significance: how the standard error costs us
jobs, justice, and lives and earlier papers, and the reaction to them
from many fields of research (e.g. Hoover and Siegler, 2008;
Miettinen, 2009; Spanos, 2008; but see Ziliak and McCloskey,

http://www.graphpad.com
http://www.graphpad.com
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2008b). As is true throughout the history of statistics, the affective
level in these debates often approaches that usually associated
with politics or religion.

3.4. What about β?

β is the probability of a Type 2 error. In the ecological sciences, as
in most disciplines, we overwhelmingly concentrate on limiting the
probability of Type 1 error (α), but rarely that of Type 2 (β). We invite
functional ecologists to consider how often they have explicitly incor-
porated β in their statistical planning and analysis, and to check how
often this is done in the papers of the current issue of this journal or
other marine biology/ecology journals. Despite the lack of preoccupa-
tion with this error source, the consequences of insufficient attention
to β may be very important; a striking example in the medical field
was given by Streiner (1990), and in the field of marine environmen-
tal research, it has been argued that the consequences of a Type 2
error are usually even more serious, and certainly more pernicious,
than those of a Type 1 error (Fairweather, 1991; Mapstone, 1995;
Peterman, 1990), yet almost all NHST papers in fisheries and aquatic
sciences lack any reference to this aspect of statistical data treatment.

As is obvious from the foregoing, Type 1 and 2 errors vary recipro-
cally, such that decreasing the probability of a Type 1 error automat-
ically (but non-linearly) increases the probability of a Type 2 error.
We should also bear in mind that, as was the case for α, there is no
intrinsic biological meaning in β (biological vs statistical meaning).

The real problem with β is that it is intrinsically unknowable.
Whereas we can determine the probability that a given result may
occur by chance (Type 1 error), we cannot determine the probability
that it may not occur, if the two probabilities are not the only ones
possible (Type 2 error). However, this is not a reason to ignore β —

we must strive to reduce it, just as we attempt to reduce α. Reducing
β is called increasing the power of the statistical test, defined as 1−β
(note that this still does not allow us to calculate the value of β).
Without increasing α, there are only 2 avenues available for increas-
ing power: reducing the variability of the data (e.g. re-doing the ex-
periment with more efficient instrumentation or methodology,
when possible), or increasing sample size (see e.g. Green, 1989 for a
discussion of the determination of the necessary n to achieve a de-
sired power level for the detection of a given response magnitude in
pollution impact studies). Both options are usually associated with in-
creased material costs. However, since β is inversely proportional to
√N, relatively large sample size increments translate to much more
modest gains in power (reductions in β). Keeping in mind the poten-
tial gravity of Type 2 errors in marine ecology, and the difficulty of in-
creasing power by either reducing data variability or increasing
sample size, it is therefore clear that in many cases the optimal com-
promise would be to increase the level of α, e.g. doubling it to 0.1
(and therefore increasing the risk of a Type 1 error), as this will automat-
ically increase statistical power (Peterman, 1990), without incurring any
additional material costs. Obviously, such decisions can only be made if
wehave someknowledge of the relative consequences of Type 1 and2 er-
rors for each particular study (informed judgment once again).

A power test may be used prospectively, in order to determine the
sample size necessary to achieve a desired power level, or retrospec-
tively, in order to calculate the power of the test we effected. By exten-
sion of the ‘conventional’ 0.05α level, the usual target set for β is 3 or 4
times the α level, or 0.15–0.20. The reasoning for accepting a higher
level for β than for α is that increasing power is usually costly (see
above), and that in any event, theseβ levels are a considerable improve-
ment over themajority of studies (Cohen, 1977). Prospectively, a power
test is used to determine what sample size is necessary to obtain a β of
0.20; retrospectively, it is used to determinewhether the sample size of
a study was sufficiently large to achieve the desired β level. In the latter
case, it is obviously too late to modify the study if we are not satisfied
with the power achieved! Note that here again, the β level may be set
higher or lower, depending on the anticipated consequences of a Type
2 error; in marine biology/ecology, these consequences are usually
unknown, so the conventional 0.15–0.20 levels may be used, with the
understanding that this is merely a convention.

Retrospective power tests may be used, as in the examples above,
to determine whether or not our sample size was sufficient to achieve
a desired power level. However, retrospective finding of insufficient
power must not be used as a justification for deciding that a result
is ‘inconclusive’ due to a small sample size, as this would nearly al-
ways guarantee such a finding when sample sizes and effect sizes
are small (Nakagawa and Foster, 2004). The correct interpretation is
that the study design does not permit any conclusions to be drawn
concerning the effect (and this is not a very laudable conclusion!).
There are other, more theoretical objections to retrospective power
calculations (Hanley, 1994; Smith and Bates, 1992).

A final note on power testing: this procedure, whether used pro-
spectively or retrospectively, relies on three ‘judgment-determined’
parameters: α, β, and effect size. The potential for (involuntary) ex-
perimenter bias is thus thrice that of the most frequent use of NHST,
where only the probabilities of Type 1 errors are considered, and
this has led several statisticians to declare it ‘misleading’, in the
sense that the perceived risk level of a Type 2 error ascertained by
this procedure is negated by the subjectivity or uncertainty involved
in fixing the three necessary parameters (Johnson, 1999). However,
reasoned attempts to guard against excessive probability of a Type 2
error are surely better than no precaution whatsoever! Since power
is exclusively an NHST concern, this important but difficult issue
could simply cease to exist if one of the alternate approaches, de-
scribed below, were adopted (Hanley, 2004).

3.5. The expanding role of confidence intervals (CI)

In the contemporarymove toward statistical renewal, heavy emphasis
has been placed on an enhanced role for confidence intervals (Cumming
and Finch, 2005; Nakagawa and Foster, 2004). Before summarizing the
various dimensions of this development, it is necessary to refresh our
thinking about data presentation, as it has recently been shown that
even this seemingly basic set of concepts is poorly-understood by many
leading researchers (Bella et al., 2005). What are loosely referred to as
‘error bars’ in graphs may be either ranges, standard deviations (SD), stan-
dard errors (SE), or confidence intervals (CI). Although these terms are tau-
ght in introductory statistics classes, it is crucial to understand both the
differences in definition and in purpose of these statistics. Ranges give
the extreme upper and lower values of a measured effect. Although
they are quite uncommon in marine ecological literature, they should
be used more frequently, in situations where N is very small (e.g. ≤5),
and it is meaningless to calculate a measure of dispersion about the
mean; this type of situation is commonwhen themeasurements are ex-
tremely costly or difficult to obtain.

The standard deviation (SD) is a measure of dispersion of values
about the sample mean. It is not correlated with sample size— adding
observations does not necessarily reduce SD. Examination of standard
deviations on graphs yields no information other than a quantitative
appreciation of data variability at each sampling. A common error is
to assume that SD's provide information on the proportion of data
values within ±a given number of SD, e.g. ±1.96. This is only true
for a large sample size characterized by a normal distribution, so no
such inferences can be made in any other context.Where N is patently
small, e.g. b5, SD, which is a measure of dispersion about the sample
mean, has such vanishingly small signification that it should neither be
calculated nor presented, regardless of the fact that most statistical
software packages will blindly do so, even with N=2!

The standard error of the mean (SE) relates the variability summa-
rized in the SD to the sample size, i.e. SE=SD/√N, and since it will de-
crease as sample size increases, its boundaries will move closer to the
population mean at the same time. A small SD at a small sample size
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allows us to be fairly certain that the population mean lies within a
small range of values. Especially at large sample sizes, SE is obviously
much smaller than either SD or the half‐width of the confidence in-
terval (see below), and hence it is the measure researchers are most
tempted to put on graphs of their mean values. In itself, the SE does
not allow hypothesis testing or even informative comparisons be-
tween treatments. The reasoning given above for the non-use of SD
at very small sample sizes obviously also applies to SE.

The confidence interval (CI) is a range of values, calculated from the
sample observations, that is believed, with a particular probability, to
contain the true parameter value. It is commonly estimated as the
mean±w, the margin of error, calculated as w=t(n−1), C⋅SE, where C
is the desired level of confidence (traditionally 95%, but see above),
and t is the critical t-value for this C, at (n−1) degrees of freedom.
There are other options for CI estimations such as profile likelihood in-
tervals or log-based intervals or bootstrap procedures,which often have
better coverage properties, especially when the sampling distribution is
non-normal and the CI might be asymmetric (Efron and Tibshirani,
1993; Royall, 1997). It is of the utmost importance to note that this does
not signify that the mean is the true effect, and the CI is the variability of
the data about this effect (this is, unfortunately, one of the most frequent
misinterpretations). It signifies that the mean is a point estimate of the
true effect, and that the corresponding CI is a range of plausible values
for the true effect (μ). Values outside the CI are relatively implausible.

There are several important advantages of reporting data as point es-
timates (e.g. means), accompanied by the corresponding CI (Cumming
and Finch, 2005; Stefano et al., 2005). These are:

o ‘Double duty’with NHST. Obviously, values outside a 95% CI corre-
spond to a two-tailed P≤0.05, if these values reflect the null hy-
pothesis. Conversely, values inside a 95% CI correspond to a two-
tailed P>0.05, if these values reflect the null hypothesis. Even
more conveniently, a ≤50% overlap of independent CI bars, which
differ in width by ≤ a factor of 2, corresponds to P≤0.05
(Cumming, 2009).

o They are visually informative, compared to simple specification of
means and P-values. Worked-through examples may be found in
Cumming (2009), Cumming and Finch (2005), and Wolfe and
Hanley (2002).

o The extremities of the CI indicate the extreme possible values of
effect size within the specified probability limits.

Editorial recognition of the importance of CI's has prompted some
journals to specifically require that all point estimates be reported
along with CIs (e.g. Canadian Journal of Psychiatry, http://
publications.cpa-apc.org/browse/documents/6).

A specialized use of the CI is the CI function (or P‐value function),
which depicts all possible CIs around a point estimate. This function is
especially applicable to meta-analyses, long popular in the medical
sciences, and increasingly so in marine ecology (Lang et al., 1999;
Sullivan and Foster, 1990).

3.6. A fresh start for Fisher?

Hurlbert and Lombardi (2009) advocate the use of ‘Neo-Fisherian
Significance Assessments (NFSA)’ to overcome the problems of, and
replace, the ‘paleo-Fisherian and Neyman–Pearsonian paradigms’
(i.e. NHST). These authors argue that NFSA more adequately detects
the existence, direction, and magnitude of differences in statistical
descriptors. They further argue that we should not be overly con-
cerned with the ‘bottom of the class’ (sic) who have misused NHST
to date (authors' note: and may well continue to do so for NFSA); rath-
er, we should keep these techniques because they are or can be
powerful when used properly. The approach requires a great deal
of — once again — reasoned judgment. P-values are reported but
no significance level is assigned. Support for rejecting a null hypoth-
esis is presented as a function of the P-value, the power, and the
design of the study. Obviously, all of the caveats associated with sta-
tistical power, interpretation of P-values, and the meaning of null
hypotheses, and their rejection, remain, as does the problem of P-
values and researcher intent (see below). NFSA is a modified way
of proceeding with classical statistics, which does not require that
they be abandoned, but rather that their use and interpretation be
made more congruent with the task of presenting and judging evi-
dence. Besides presenting this interesting advantage, NFSA does
not require the prior selection of ‘models’, as is the case with the al-
ternate approaches outlined below. To be sure, in many situations,
the information necessary to formulate such models is lacking, so
it is important to have at hand an approach which will simply reject
a null hypothesis, as well as a carefully-controlled study in which
the experimental hypothesis is the only likely alternate under the
study conditions. It is early yet to judge whether NFSA will actually
‘rise’, but studies incorporating this statistical approach have begun
to appear in the literature (French et al., 2011). As might have been
predicted, since this approach does not propose a set, mechanical
procedure, different researchers may be more or less rigorous in ap-
plying the reasoning; French et al. (2011) use the term ‘significance’
but not ‘significance level’, while Stoner (2011) simply avoided
choosing an α level without explicitly using the ‘reasoned judg-
ment’ outlined above.

3.7. Final word of caution: the P-value Achilles heel

When computers calculate exact P-values for a given frequentist
statistic, the software makes assumptions about the intent of the re-
searcher with respect to data collection. This is not at all a trivial or
arcane point. As shown quite lucidly by Kruschke (2010a), the intent
of the researcher may alter the critical value of the test statistic very
substantially, and hence the probability of obtaining that value,
were the experiment or analysis to be repeated many times (the
basis for calculating the exact P-value). However, the actual intent
of the researcher may not be, and usually is not, the intent assumed
by the software. Calculation of CIs is prone to the same problem for
the same reason. There are four ways to circumvent this: (1) do not
calculate exact probability values (only use a well-informed critical
α level and eliminate all reference to ‘very significant’ differences),
(2) wait for software which will ask the pertinent questions in
order to ascertain researcher intent concerning data collection, and
in the meantime do (1) only, (3) use a variety of classical methods
based principally on effect size, rather than P-values (ANOVA, regres-
sion, correlation), or (4) adopt one of the alternate approaches to in-
vestigation and data analysis outlined below.

Before leaving the vast domain of classical statistics, it is useful to
recapitulate the most common misconceptions/misapplications en-
countered in marine biology/ecology, presented in Table 1. In all
cases presented in Table 1, suggested remediation is ‘brain on, com-
puter off’.

4. Alternate approaches to investigation and data analysis

The alternate methods of providing evidence, increasingly used in
the medical and social sciences, and more recently in terrestrial and
aquatic ecology, are all based on the comparison of models or
model components (parameters), and subsequent selection of the
model(s) which is (are) best supported by the data. Selection criteria
may be likelihood (Likelihood approach), information content and
model complexity (Information-theoretic approach), or credibility
(Bayesian approach). Another common point in these approaches is
the enhanced role of informed judgment in model or parameter selec-
tion. Emphasis is placed on the careful a priori definition of a set of
candidate models, based on the science of the problem (insofar as it
is known at the time of the study). This is conceptually more difficult
than estimating the model parameters and their precision, and this is
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Table 1
A rogue's gallery of common classical statistical errors.

1) Tests are mechanistic and involve no subjectivity or reasoned judgment.
The output is only S/NS
2) Statistical significance=biological significance
3) Minimum α=0.05 for statistical significance (cutoff value)
4) P>0.05=no effect, or groups are the same/identical with respect to the effect
5) Whenever P>0.05 for an effect, groups can be combined
6) P‐value reflects effect size
7) It is necessary to adjust the critical P-value in multiple comparisons
8) H0: μ1=μ2, or null hypothesis of no difference, is a meaningful statement
9) Rejecting H0 affirms the experimental or chosen alternate hypothesis
10) Minimization of β is unimportant or infeasible
11) All ‘error bars’ give different versions of the same information
12) 95% CIs must not overlap for there to be an α P of ≤0.05
13) 95% CIs which touch but do not overlap show an α P of 0.05
14) It is possible to compare error bars on a series of sampling dates
(inter-date comparison)

15) As long as the software will calculate a statistic, it can and should be reported
16) Replication of a previously-published study is not worthy of publication
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where the deepest available understanding of ecological processes
and critical thinking are needed. We refer to these approaches collec-
tively as ‘ITLB’ (Information theoretic–Likelihood–Bayesian).

The likelihood function and the term likelihood are used in all three
alternate approaches, so it is useful to define them here, and especial-
ly to differentiate likelihood and probability (P-values). The likelihood
function is the set of probabilities for various outcomes, given speci-
fied parameter values. Likelihood is defined as the probability of
obtaining the exact data observed, D, given the hypothesis (outcome)
being considered [P(D|H)]. Likelihoods are values which correspond
to the height of the probability distribution at a particular point,
whereas P‐values are areas of the probability distribution.

4.1. Likelihood analysis

In the likelihood approach, different models, including the null hy-
pothesis, can be compared according to their likelihood (Edwards,
1992; Royall, 1997). One form of the approach has been hybridized
to fit the classical type of statistical analysis, the likelihood ratio test,
in which we calculate how many times more likely the data are
under one model than the other i.e. the null model (hypothesis) vs
the alternate model (hypothesis). P-values and critical levels for re-
jection of the null model may be used, but are not necessarily part
of likelihood analysis.

Although P-values and critical levels have the superficial advan-
tage of reassuring the user that he or she is operating within the ‘se-
cure’ perimeter of classical statistics, decisions based on likelihood
ratios alone are actually more well-informed (Pernerger and
Courvoisier, 2010). The graded estimation of likelihood, given several
possible models, each with their own likelihood ratios, more closely
resembles many real-world situations, and contrasts with the (at
best) ‘mechanical razor’, black-or-white approach typically taken in
the use of classical statistics. It has the immense advantage of being
intuitive; correct interpretation of likelihood analyses, and conse-
quent decision-making, is much more probable, even for students
not trained in the technique (Pernerger and Courvoisier, 2010). The
understanding and interpretation of statistical tests and procedures
are obviously the foundation of the entire statistical enterprise, and
it is to be hoped that research in the recent field of statistical cogni-
tion will play a major role in the optimization of ‘cognition-friendly’
statistical procedure (Beyth-Marom et al., 2008; Cumming et al.,
2004).

4.2. Information‐theoretic analysis

Ecologists frequently adapt and adopt concepts from information‐
thermodynamic theory, as tools to quantify essential characteristics
of complex systems such as ecosystems; perhaps the best‐known is
the archetypical biodiversity measure, the Shannon–Wiener index.
The information-theoretic approach to data treatment (Anderson,
2008; Burnham and Anderson, 2002) is an integrated process of a
priori specification of a set of candidate models (based on the science
of the problem), model selection based on the principle of parsimony,
and the estimation of parameters and their precision. The principle of
parsimony implies the selection of a model with the smallest possible
number of parameters for adequate representation of the data, i.e. a
trade-off between model fit (likelihood) and model complexity. The
most commonly-used measure to apply the principle of parsimony
is Akaike's Information Criterion (AIC — Akaike, 1973).

Under the information‐theoretic approach, it is not assumed that
truth is included in the set of candidate models and the issue is not
which model is true, but rather which model, when fitted to the
data, is the one which best represents the finite information con-
tained in the data. The concept of a ‘true’ model seems to be of little
utility in marine ecology, as biological systems are quite complex
with many small effects (tapering effects), individual heterogeneity,
and interactions that are generally unknown. In the information‐
theoretic approach, ‘information’ about the biological system
under study is assumed to exist in the data, and the goal is to ex-
press this information in a coherent and compact way, which may
then be interpreted in the light of whatever other relevant informa-
tion also exists. There is, of course, no predetermined cut-off level
for acceptance or rejection of hypotheses.

Since larger data sets usually contain more information, more
complicated models may be supported by larger data sets. The
information-theoretic approach allows formal inference to be based
on several or even all the candidate models rather than on only the
‘best’ model. This procedure is termed multi-model inference (MMI)
and has several theoretical and practical advantages (Burnham and
Anderson, 2002; Katsanevakis, 2006).

One of the earliest uses of this approach in marine biology was in a
series of papers, which quietly revolutionized the modeling of growth
and allometry in marine ectotherms (Katsanevakis, 2006;
Katsanevakis and Maravelias, 2008; Katsanevakis et al., 2007a), and
also contained concise explanations of information theory and its par-
ticular relevance to growth and allometric modeling. This approach
has since been extended to other species (e.g. Griffiths et al., 2010;
Harry et al., 2011; Lin and Tzeng, 2009; Mercier et al., 2011;
Rabaoui et al., 2007, 2011; Yokoyama and Amaral, 2011). The
information-theoretic approach has also been applied to other areas
of marine biology and ecology, such as respiration studies
(Katsanevakis et al., 2007b), investigations of the effect of exploita-
tion pattern on the status of fish stocks (Vasilakopoulos et al.,
2011), investigations of stock-recruitment relationships of fish
(Galindo-Cortes et al., 2010), spatial distribution and habitat use
(Katsanevakis et al., 2010), modeling detectability in underwater vi-
sual surveys (Katsanevakis and Thessalou-Legaki, 2007; Katsanevakis
et al., 2011), and estimating occupancy patterns of marine species
(Katsanevakis et al., 2011). Advantages and caveats concerning the
use of Information Theory have been succinctly outlined in
Anderson et al. (2001); it is clear that this is a promising tool for an-
alyzing and understanding data, not only in experimental work, but
also in observational studies, where the classical hypothesis-testing
approaches seem to have no theoretical justification and often per-
form poorly (Burnham and Anderson, 2002).

4.3. Bayesian analysis

The Bayesian approach to investigation is based on the successive
re-allocation of credibility. Credibility is defined as the likelihood of
models or explanations which are repeatedly modified as increasing
amounts of information are gathered about the models. Some models
may be weakened and rejected in this process (diminished
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credibility), and others may be strengthened and eventually adopted
(enhanced credibility). Bayesian analysis goes against the grain of
classical statistics because, obviously, the term ‘credibility’ is anathe-
ma to those who have been taught that science (and in particular sta-
tistics) has nothing to do with belief. The epistemological foundation
for this approach is the recognition that natural phenomena are in-
herently complex, and that considering multiple variables (i.e. multi-
ple models or explanations) brings us closer to the truth than just
analyzing isolated variables. Furthermore, whether they will admit
it or not, scientists engage in credibility evaluation of their (and
other's) data virtually every day, consciously or unconsciously. And fi-
nally, the term ‘credibility’ can be replaced with the more reassuring
term ‘factual congruency’, where congruency is contingent upon ob-
servation or experimentation; some authors simply use the term
‘likelihood’ (Dienes, 2011), while others use the inverse: greater or
lesser ‘doubt’ as a function of the evidence presented (Goodman,
2001).

In the biological world, Bayesian techniques are familiar to all who
have done, or read papers about, cladistic phylogeny (e.g. Dufour et
al., 2006; Mikkelson et al., 2006). The same process of successive
strengthening of belief or factual congruency can be applied to eco-
logical problems, and it is often far more appropriate than classical
approaches (Dienes, 2011). It can be applied to many different types
of ecological problems, from hypothesis comparisons to determina-
tion of development times in natural planktonic populations (Gould
and Kimmerer, 2010), spatial distribution (e.g. Palmer et al., 2011),
fisheries stock assessment (Jiao et al., 2011; Punt and Hilborn,
1997), and, most recently, trophic ecology (Beninger et al., 2011;
Moore and Semmens, 2008). Bayesian analysis requires a starting-
point, or prior hypothesis, characterized by a probability distribution,
which is then either strengthened or weakened by addition of data.
Although it is often said that Bayesian ‘priors’ need not be especially
likely or even informative, their distributions must be appropriate
for the hypothesis (Christensen, 2005). A simplified procedure,
using the classical null hypothesis as the minimum Bayes factor (the
change in probability of the hypothesis), has been proposed, and al-
though it suffers from the same confounding of effect size and proba-
bility of occurrence as NHST, it circumvents most of the other NHST
problems (Goodman, 2001). It should be viewed as an attempt to
lead classically-trained researchers to alternate approaches via a
stepping-stone, although those workers who really contemplate test-
ing the Bayesian waters are probably not the ones who will avail
themselves of such a prop.

5. Classical and alternate approaches: informed use is critical

Different methods of statistical inference (i.e. classical and alterna-
tive approaches) can give quantitatively and qualitatively different
results (Gerrodette, 2011). In marine conservation and management
this can have serious implications, as the requirement to disprove a
null hypothesis of no effect (or no impact or no decline) can lead to
a non-precautionary or non-action attitude. Against the backdrop of
vociferous reformation, counter-reformation, and cognitive inertia,
several recent papers have called for the obvious: better understand-
ing of the foundations and limitations of both classical and alternative
approaches to data treatment, and informed use of one or the other,
or, despite some objections, both in concert (Stephens et al., 2005).

Although classical and ITLB approaches differ fundamentally in
philosophy and method, they have a common denominator: both
rely heavily on a priori hypothesis formulation. In the case of classical
statistics, this is due to the desire for an ostensibly ‘arms-length’ rela-
tion to the data, whereas in ITLB it is due to the necessity of a scien-
tifically justified starting-point. In both approaches, however, the
data are not intended to be repeatedly re-analyzed to reveal
unsuspected proximities or differences, as in principal component
analysis and all post-hoc methods. However, since our understanding
of biological phenomena is so patently limited, post-hoc comparisons
can be an extremely useful tool for discovering new relationships and
proposing new hypotheses — which may help to inform the starting
and competing models in ITLB.

The constant, and insidiously tempting danger of excess is ‘data
dredging’ (Classical) or ‘model dredging’ (ITLB), where we have no
idea at all about the phenomena, and attempt, a posteriori, to ‘discov-
er’ any seemingly plausible scenario to either fit the statistical results
(Classical) or serve as models (ITLB) (Stephens et al., 2005). This
practice has been called HARKing: Hypothesizing After the Results
are Known, and has been shown to be quite widespread in most dis-
ciplines (Kerr, 1998). Although no quantitative study is available on
its prevalence in marine ecology, personal contact with many marine
scientists over several decades indicates that this field is no exception.

Notwithstanding the foregoing, scientists whose work is at the ex-
treme edge of their scientific field (and which therefore precedes
human knowledge) are all aware of the converse danger of insistence
on a priori hypothesis formulation: our limited, or inexistent, under-
standing of the phenomena may prevent us from formulating hy-
potheses congruent with the underlying reality. In these situations,
scientists must indeed HARK, and although a seemingly preponderant
negative effect of HARKing may be concluded by counting the num-
ber of HARKing studies (Kerr, 1998), a most emphatic exception
must be made for studies beyond which there is only a vast unknown.
Once again, we see that proper statistical treatment is really about in-
formed judgment and constant self-examination and criticism.

6. The crucial role of editors and reviewers

6.1. Study replication

In both the classical and the ITLB approaches, many authors who
have detected statistically‐significant differences or who have sub-
stantially supported models, are tempted to conclude that their re-
sults are highly unlikely to be due to anything other than the
proposed alternative hypothesis or best model. Readers of such pa-
pers are also tempted to conclude that repeating the experiment is
both useless, and a waste of resources. Nothing could be further
from the truth. As noted by Kruschke (2010b), even statistically-
significant findings with a high power in the classical approach do
not give any indication of repeatability of the results. This point was
most forcefully argued by Johnson (1999), who concluded that the
only path to increased certainty is through true study replication (and
even then, this does not guarantee that the proposed alternative hy-
pothesis is true, since we could obtain the same results consistently
for reasons other than the alternative hypothesis). Here, the responsi-
bility of editors and referees is crucial: replicative studies should be
welcomed, not discouraged as being ‘repetitive’, as per current journal
practice. The counter-argument from editors, that there is already
not enough room for original papers, does not change the necessity
for such studies, if approaching truth is the goal of these journals.
The systemic reward for originality, as well as the costs and often
the practical impossibility of replication in marine biology/ecology
(e.g. studies of seasonal effects — it is not possible to control climatic
conditions), while perfectly justifiable, are perhaps the greatest bar-
riers to replication.

6.2. Systematic publication bias

Another serious problem arising from unofficial journal/referee
policy is the practice of rejecting manuscripts which report non-
statistically significant results (the ‘file-drawer effect’ — Carver,
1978; Rosenthal, 1979). The consequence is, of course, an over-
representation of studies which report statistically‐significant results
concerning a given question or phenomenon (publication bias),
which may even lead to the reporting of effects which do not exist
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(e.g. if only a small minority of studies, published, were able to detect
an effect, while the vast majority, non-published, could not).

Publication bias has been known for decades, has most recently
been highlighted in the journal Nature (Sarewitz, 2012), and is even
described in the popular Web site Wikipedia (http://en.wikipedia.
org/wiki/Publication_bias). Besides the inevitable consequent mis-
representation of reality, such bias will be immeasurably amplified
in the increasingly popular ‘meta-analyses’which dot the marine eco-
logical landscape. On the other hand, since there are many more neg-
ative or non-statistically-significant possible results than there are
positive ones (see Comments in Sarewitz, 2012), editors must some-
how select, without bias, studies which bring something new to the
story, in addition to a negative or non-significant result. This requires
a very vast and deep understanding of the fields in which they
specialize.

Detection of publication bias in a particularfield can be achievedusing
funnel‐plot asymmetry (Dubben and Beck-Bornholdt, 2005; Egger et al.,
1997), or, once again, a Bayesian modeling approach (Givens et al.,
1997). Editors should welcome submission of high-quality studies of
this type for the fields covered by their journals (e.g., Song et al., 2010).

6.3. Statistical overkill

In the same vein as publication bias, the practice of ‘statistical
overkill’ is equally unfortunate. Under pressure from peers, reviewers
and editors, researchers often feel compelled to ‘pump up’ the statis-
tical treatment and presentation of their results. In many cases, the
resulting ill-founded, poorly-chosen, inadequately presented statisti-
cal treatment not only adds nothing to the original data, it actually
obscures and detracts from it (Beninger et al., 2010). Researchers, es-
pecially those who report the results of observational studies or of field
work in which some components could not be randomized, should not
feel obligated to embellish their data with statistical treatment developed
for randomized, experimental studies working within a strong theoretical
framework. Their studies should be recognized by reviewers and edi-
tors as perfectly legitimate and publishable, if within the scope of the
journal and of a sufficiently high caliber.

6.4. The roles of statisticians

Statisticians often distinguish between themselves and ‘subject
specialists’, with whom they are occasionally invited to collaborate.
While statisticians argue convincingly for their implication at the ear-
liest stages of any project (Murray, 1988; Strasak et al., 2007), this is
not always possible, due to a shortage of statisticians willing to en-
gage in such enterprises, and also to the problem of discipline insular-
ity, or lack of sufficient training in each other's field to allow effective
collaboration.

Whether or not statisticians are involved in projects at an early
stage, or not at all, quality control of data treatment is as crucial as
for all other aspects of a manuscript. Editors of scientific journals
are the ultimate ‘gatekeepers’ of newly-generated knowledge, and
as such they should have the necessary mechanisms at their disposal
to impose a final, and sometimes only, quality control on statistical
treatment of data. In concrete terms, this means the association of
statistical consultants with the editorial team.

Although to our knowledge, no marine biology/ecology journal
currently includes statistical consultants on their editorial staff, the
medical sciences have a fairly long track record of such practice. As
early as 1990, the Canadian Journal of Psychiatry referred to their reg-
ular statistical consultant in an editorial on research methods (Bland,
1990), who also published a paper on sample size and power in the
same issue (Streiner, 1990). Whereas in 1981, the proportion of man-
uscripts reviewed by statistical consultants at any stage after submis-
sion was less than 15% (George, 1985), in 1995, 52% of the
manuscripts submitted to medical journals in the top-ranking
quartile were so reviewed, versus 27% in the bottom‐ranking quartile
(Goodman et al., 1998). Indeed, the top-ranking medical journals
commonly maintain several such consultants (e.g. four at the New
England Journal of Medicine). The probability of having a staff statis-
tical consultant on the editorial boards of the top 25%‐ranked medical
journals was 82% in 1995 (Goodman et al., 1998), and is probably
close to 100% today. Obviously, within the medical specialties, there
are fields which rely much more heavily on statistics than others,
e.g. epidemiology on the high end, and dermatology on the low end,
and this is reflected in the statistical review practices of their specialty
journals (Katz et al., 2004).

The overall positive effect of statistical review onmanuscript qual-
ity has been demonstrated (Altman, 1998). On the other hand, the
negative effect of ill-informed, yet frequent, statistical critique by
‘subject specialists’ has been deplored (Bacchetti, 2002). These obser-
vations lead to the conclusion that at the very least, whenever statis-
tical treatment is criticized by a ‘subject specialist’, the manuscript
should be referred to a statistical consultant. An example of a statisti-
cal reviewing checklist is presented in Houle and Penzien (2009), and
although it is not totally without reproach, it does provide a starting
point for journals not yet up to speed.

The role of marine biology/ecology journal editors, acting through
a policy of statistical review, is thus absolutely crucial to the improve-
ment of data treatment in manuscripts submitted, or even in prepara-
tion. Merely stating that researchers should strengthen statistical
procedure (as we do here), while necessary, is not sufficient to effect
real change; stricter editorial policy and clearer author guidelines are
needed (Fidler et al., 2005). Indeed, a statement that manuscripts will
be or even may be subject to review by a staff statistician (e.g. Amer-
ican Journal of Kidney Disease, www.ajkd.org/content/edpolicies),
will probably in itself result in greater care during data treatment,
manuscript preparation, and probably also in project planning. This
is all the more paramount in view of the fact that most submitted
manuscripts are eventually published somewhere. Although we are
unaware of a comparative bibliometric study in marine biology/ecol-
ogy, in the medical field it has been determined that only 15% of sub-
mitted manuscripts remained inactive following rejection; the rest
were either published elsewhere (75%), under review elsewhere
(3%), or being prepared for re-submission elsewhere (7%) (Hall and
Wilcox, 2007).

7. Conclusion

Just as the techniques of chemical analyses or nucleic acid se-
quencing constantly improve, so do the techniques of study design
and statistical treatment of data. While the nature and context of eco-
logical data are often quite different from those of the medical or so-
cial sciences, in which numerous, seemingly esoteric techniques
abound, the basic approaches to experimental data have indeed
evolved quite significantly in the past few decades, greatly expanding
the biologist's statistical toolbox. Beyond the burgeoning additions
and refinements to classical statistics which fill the pages of the
major statistical journals, the increasing use of ITBL approaches has
opened promising new paths in our progress toward more complete
phenomenological understanding, and rather than either ‘going
with the flow’ (inertia) or trying to be at the ‘cutting edge’ (fashion-
ista), biologists should strive to use the appropriate statistical tool
for each project (Anderson et al., 2001; Stephens et al., 2005). For
this to become more reflexive, it is obvious that the foregoing consid-
erations must be more widely disseminated in university biology/
ecology curricula at the undergraduate level. This means that, in
most instances, at least three, and probably four, semester statistics
courses, taught by biologically-familiar statisticians, will be required
in order to achieve a comprehensible introduction, and hopefully
the curiosity and motivation to begin selecting the best tools for
each job.

http://en.wikipedia.org/wiki/Publication_bias
http://en.wikipedia.org/wiki/Publication_bias
http://www.ajkd.org/content/edpolicies
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